1,966 research outputs found

    The Caenorhabditis eleguns genome contains monomorphic minisatellites and simple sequences

    Get PDF
    Many species have been shown to contain tandemly repeated short sequence DNA kinown as minisatellites and simple sequence motifs. Due to allelic variation in the copy number of the repeat unit these loci are usually highly polymorphic. Here we demonstrate the presence of sequences in the genome of the nematode Caenorhabditis elegans which are homologous to two sets of short sequence DNA. However, when two independent strains were compared no polymorphism for these sequences could be detected.</p

    Identity and Paternity Testing of Cattle:Application of a Deoxyribonucleic Acid Profiling Protocol

    Get PDF
    We have applied DNA profiling for identity and parentage studies of cattle using a standardized procedure based on synthetic micro- and minisatellite multilocus core probes in Southern blot hybridization assays. This protocol is useful for paternity analysis of cattle and for real case work (e.g., identity and paternity disputes).</p

    Genetics and biology of vitamin D receptor polymorphisms

    Get PDF
    The vitamin D endocrine system is involved in a wide variety of biological processes including bone metabolism, modulation of the immune response, and regulation of cell proliferation and differentiation. Variations in this endocrine system have, thus, been linked to several common diseases, including osteoarthritis (OA), diabetes, cancer, cardiovascular disease, and tuberculosis. Evidence to support this pleiotropic character of vitamin D has included epidemiological studies on circulating vitamin D hormone levels, but also genetic epidemiological studies. Genetic studies provide excellent opportunities to link molecular insights with epidemiological data and have therefore gained much interest. DNA sequence variations, which occur frequently i

    Bone mineral density and chronic lung disease mortality: the Rotterdam study

    Get PDF
    Context: Low bone mineral density (BMD) has been associated with increased all-cause mortality. Cause-specific mortality studies have been controversial. Objective: The aim of the study was to investigate associations between BMD and all-cause mortality and in-depth cause-specific mortality. Design and Setting: We studied two cohorts from the prospective Rotterdam Study (RS), initiated in 1990 (RS-I) and 2000 (RS-II) with average follow-up of 17.1 (RS-I) and 10.2 (RS-II) years until January 2011. Baseline femoral neck BMD was analyzed in SD values. Deaths were classified according to International Classification of Diseases into seven groups: cardiovascular diseases, cancer, infections, external, dementia, chronic lung diseases, and other causes. Gender-stratified Cox and competing-risks models were adjusted for age, body mass index, and smoking. Participants: The study included 5779 subjects from RS-I and 2055 from RS-II. Main Outcome Measurements: We measured all-cause and cause-specific mortality. Results: A significant inverse association between BMD and all-cause mortality was found in males [expressed as hazard ratio (95% confidence interval)]: RS-I, 1.07 (1.01-1.13), P = .020; RS-II, 1.31 (1.12-1.55), P = .001); but it was not found in females: RS-I, 1.05 (0.99-1.11), P = .098; RS-II, 0.91 (0.74-1.12), P = .362. An inverse association with chronic lung disease mortality was found in males [RS-I, 1.75 (1.34-2.29), P < .001; RS-II, 2.15 (1.05-4.42), P = .037] and in RS-I in females [1.72 (1.16-2.57); P = .008], persisting after multiple adjustments and excluding prevalent chronic obstructive pulmonary disease. A positive association between BMD and cancer mortality was detected in females in RS-I [0.89 (0.80-0.99); P = .043]. No association was found with cardiovascular mortality. Conclusions: BMD is inversely associated with mortality. The strong association of BMD with chronic lung disease mortality is a novel finding that needs further analysis to clarify underlying mechanisms

    Linkage analysis and whole exome sequencing identify a novel candidate gene in a Dutch multiple sclerosis family

    Get PDF
    Background: Multiple sclerosis (MS) is a complex disease resulting from the joint effect of many genes. It has been speculated that rare variants might explain part of the missing heritability of MS. Objective: To identify rare coding genetic variants by analyzing a large MS pedigree with 11 affected individuals in several generations. Methods: Genome-wide linkage screen and whole exome sequencing (WES) were performed to identify novel coding variants in the shared region(s) and in the known 110 MS risk loci. The candidate variants were then assessed in 591 MS patients and 3169 controls. Results: Suggestive evidence for linkage was obtained to 7q11.22-q11.23. In WES data, a rare missense variant p.R183C in FKBP6 was identified that segregated with the disease in this family. The minor allele frequency was higher in an independent cohort of MS patients than in healthy controls (1.27% vs 0.95%), but not significant (odds ratio (OR) = 1.33 (95% confidence interval (CI): 0.8–2.4), p = 0.31). Conclusion: The rare missense variant in FKBP6 was identified in a large Dutch MS family segregating with the disease. This association to MS was not found in an independent MS cohort. Overall, genome-wide studies in larger cohorts are needed to adequately investigate the role of rare variants in MS risk

    Burden of genetic risk variants in multiple sclerosis families in the Netherlands

    Get PDF
    Background: Approximately 20% of multiple sclerosis patients have a family history of multiple sclerosis. Studies of multiple sclerosis aggregation in families are inconclusive. Objective: To investigate the genetic burden based on currently discovered genetic variants for multiple sclerosis risk in patients from Dutch multiple sclerosis multiplex families versus sporadic multiple sclerosis cases, and to study its influence on clinical phenotype and disease prediction. Methods: Our study population consisted of 283 sporadic multiple sclerosis cases, 169 probands from multiplex families and 2028 controls. A weighted genetic risk score based on 102 non-human leukocyte antigen loci and HLA-DRB1*1501 was calculated. Results: The weighted genetic risk score based on all loci was significantly higher in familial than in sporadic cases. The HLA-DRB1*1501 contributed significantly to the difference in genetic burden between the groups. A high weighted genetic risk score was significantly associated with a low age of disease onset in all multiple sclerosis patients, but not in the familial cases separately. The genetic risk score was significantly but modestly better in discriminating familial versus sporadic multiple sclerosis from controls. Conclusion: Familial multiple sclerosis patients are more loaded with the common genetic variants than sporadic cases. The difference is mainly driven by HLA-DRB1*1501. The predictive capacity of genetic loci is poor and unlikely to be useful in clinical settings.</p
    • …
    corecore